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Abstract: When we have several results of measuring or estimating the same quantities, it is
desirable to aggregate them into a single estimate for the desired quantities. A natural requirement
is that if the majority of estimates has some property, then the aggregate estimate should have the
same property. It turns out that it is not possible to require this for all possible properties – but
we can require it for bounds, i.e., for properties that the value of the quantity is in between given
bounds a and b. In this paper, we prove that if we restrict the above “voting” approach to such
properties, then the resulting aggregate is an (interval) median. This result provides an additional
justification for the use of median – in addition to the usual justification that median is the most
robust aggregate operation.
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1. Formulation of the Problem

Need for aggregation. For many real-real problems, there are several different decision making
tools. Each of these tools has its advantages and its limitations (otherwise, if a tool does not have
any advantages, it would not be used). To combine the advantages of different tools, it therefore
desirable to aggregate their results.

Voting as a natural approach to aggregation. One of the most widely used methods of
aggregating several results is voting: if the majority of results satisfy a certain property, then we
conclude that the actual value has this property; see, e.g., (Easley and Kleinberg, 2010; Regenwetter,
2009; Tang, 2015) and references therein.

For example, in a medical classification problem, if most classifiers classify the person’s data as
corresponding to pneumonia, we conclude that this person has pneumonia.

What we do in this paper. In this paper, we analyze how voting can be used to aggregate
several numerical estimates.

This is not easy. To understand why this task is not easy, let us recall that a similar idea has
been actively used in Artificial Intelligence.

Voting is closely related to the notions of “typical” in Artificial Intelligence. Voting is
closely related to the notion of a “typical” object of a class, the notion actively studied in Artificial
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Intelligence. Indeed, what is an intuitive meaning of a term “typical professor”? A natural meaning
is that if most professors have some property, that a “typical” professor must have this property.
For example, if most professors are absent-minded, then we expect a “typical” professor to be
absent-minded as well.

If we know that a certain professor is a “typical” professor – or, in other words, not an abnormal
professor – then whatever property normally holds for professors should hold for this particular
professor as well. This line of reasoning is known as non-monotonic reasoning, and it is very
important in Artificial Intelligence; see, e.g., (Halpern, 2003; Jalal-Kamai et al., 2012; Kreinovich,
2004; Kreinovich, 2012; Longpré and Kosheleva, 2012).

Related problem: no one is perfectly typical. This analogy can help us illustrate the problem
related to the voting approach: while some professors may be more or less typical, no one is
absolutely typical. For example, even if it turns out that we have found a professor who is typical
(in the voting sense) in his/her appearance, in his/her habits, this professor’s specific area of research
– no matter what it is – will automatically make this professor not typical.

Indeed, it could be theoretical physics – but clearly, most professors are not theoretical physicists.
It could be computational linguistics – but most professor are not computational linguists, etc.

This problem is why in Artificial Intelligence, there is a vast and ongoing literature analyzing
how best to describe typical (not abnormal) objects.

2. Main Definitions and the First Result Explaining Why Voting Aggregation Is Not
Easy

What is given. In the simplest case, we have several estimates x1, . . . , xn for the value of some
physical quantity. We would like to combine these estimates into a single estimate x.

In more complex situations, we have several quantities that we would like to estimate. Let us
denote the number of these quantities by q. In this case, we have several tuples x1, . . . , xn, each of
which estimates all q quantities: xi = (xi1, . . . , xiq). Our goal is to aggregate these estimates into a
single estimate x = (e1, . . . , eq).

Let us describe voting aggregation in precise terms. Both for the 1-D case and for the
multi-D case, we would like to select an estimate x that satisfies the following condition:

if the majority of the inputs x1, . . . , xn satisfies a property P ,
then x should satisfy this property.

In mathematics, properties are usually described by sets: namely, each property P can be
described by the set S of all the objects that satisfy this property. In these terms, the above
condition takes the following form:

if the majority of the inputs x1, . . . , xn belong to a set S,
then x should belongs to this same set S.

In principle, we can formulate this condition for all possible sets, but in this case, as we have
mentioned earlier, there may not exist any aggregate x that satisfies this property. Thus, it make
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sense to consider the possibility of restricting this condition only to sets S from a certain class S
of sets. So, we arrive at the following definition.

Definition 1. Let q ≥ 1, let S be a class of subsets of IRq, and let x1, . . . , xn ∈ IRq.

− We say that an element x ∈ IRq is a possible S-aggregate of the elements x1, . . . , xn if the
following condition holds:

for every S ∈ S, if the majority of xi are in this set,
then x should be in this set.

− The set of all possible S-aggregates is called the S-aggregate of the elements x1, . . . , xn.

Let us first consider the case when we allow all properties (i.e., all sets). Let us first

consider the case when we allow all possible sets S ⊆ IRq, i.e., when S is equal to the class U
def
= 2IR

q

of all subsets of IRq. In this case, as the following result shows, voting aggregation does not work –
since the result set is often empty:

Proposition 1. For every q ≥ 1 and n ≥ 3, if all n elements x1, . . . , xn are different from each
other, then the U -aggregate of the elements x1, . . . , xn is empty.

Proof. We will prove this by contradiction.

1◦. Let us assume that the U -aggregate set is not empty. This means that there is an element x
which is a possible U -aggregate of x1, . . . , xn.

2◦. All elements xi belong to the set {x1, . . . , xn}; thus, the majority of elements xi belongs to this
set as well. So, by definition of a possible aggregate, x should belong to this set. Thus, we must
have x = xi for some i.

3◦. Let us now consider the set of all the elements x1, . . . , xn except for the element xi, i.e., the
set {x1, . . . , xi−1, xi+1, . . . , xn}. Out of n elements x1, . . . , xn, n− 1 belong to this set. Since n ≥ 3,
these elements constitute the majority. Thus, by definition of a possible aggregate, the element x
should belong to this new set – but since x = xi, it doesn’t.

This contradiction proves that the U -aggregate set is indeed empty.

Let us describe all the cases when the U-aggregate set is not empty. We can actually
describe all the cases when the U -aggregate set is not empty, and explicitly describe how this
aggregate set looks like. We will start with the cases n = 1 and n = 2 and then consider cases when
n ≥ 3.

Proposition 2. For every q ≥ 1:

− when n = 1 then the U -aggregate set of x1 is {x1};

− when n = 2, then the U -aggregate set of x1, x2 is {x1, x2}.
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Proof.

1◦. For n ≤ 2, the majority of xi means all the elements xi. Thus, the above condition means that
for every set S, if xi ∈ S for all i, then we should have x ∈ S. This is trivially true for all elements
xi, so all elements xi are indeed possible U -aggregates of x1, . . . , xn.

2◦. To complete the proof, let us show that no other elements are possible U -aggregates. Indeed, if
x is a possible U -aggregate, then for the set S = {x1, . . . , xn}, we have xi ∈ S for all i, and thus,
we should have x ∈ S. So, x must indeed coincide with one of the elements xi.

The proposition is proven.

Proposition 3. For every q ≥ 1 and for all odd n ≥ 3:

− if the majority of elements x1, . . . , xn are equal to each other, then the U -aggregate set of
x1, . . . , xn consists of this common element;

− in all other cases, the U -aggregate set is empty.

Proof.

1◦. Let us first consider the case when the majority of elements xi are equal to each other.

1.1◦. Without losing generality, we can assume that these elements are x1 = . . . = xk for some
k > n/2. In this case, the majority of elements xi belong to the set {x1}. Thus, every possible
U -aggregate x must belong to this set, and hence, x must be equal to x1.

1.2◦. Let us now prove that the element x1 is a possible U -aggregate.
Indeed, if the majority of elements xi belong to the set S, this means that at least some of the

elements x1, . . . , xk must belong to this set – otherwise, we would not have a majority. Since the
element x is equal to all of them, x belongs to this set S as well. Thus, x1 is indeed a possible
U -aggregate.

2◦. Let us now consider the case when we do not have a majority of elements that are equal to each
other. Let us show that in this case, the U -aggregate set is indeed empty.

Indeed, let x be a possible U -aggregate set. Since all elements xi (and, thus, the majority of
them) belong to the set {x1, . . . , xn}, this implies that we should have x ∈ {x1, . . . , xn}, i.e., x must
be equal to one of the original inputs: x = xi for some i.

Since we do not have a majority of elements that are equal to each other, there are fewer than n/2
elements which are equal to xi. Thus, the majority of elements x1, . . . , xn belong to the difference
set {x1, . . . , xn} − {xi}. So, by the definition of a possible U -aggregation, the possible U -aggregate
x should also belong to this set – but since x = xi, it doesn’t.

The contradiction proves that in this case, the U -aggregate set is indeed empty.

Proposition 4. For every q ≥ 1 and for all even n ≥ 4:

− if the majority of elements x1, . . . , xn are equal to each other, then the U -aggregate set of
x1, . . . , xn consists of this common element;
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− if half of the elements x1, . . . , xn are equal to an element a, and the other half is equal to
another element b, then the U -aggregate set is equal to {a, b};

− if exactly half of the elements x1, . . . , xn is equal to an element a, and not all other elements
are equal to each other, then the U -aggregate set is equal to {a};

− in all other cases, the U -aggregate set is empty.

Proof. The first and the last cases are proven in exactly the same way as in the proof of
Proposition 3. Let us therefore consider the remaining two cases.

1◦. Let us first consider the case when half of the elements x1, . . . , xn are equal to an element a,
and the other half is equal to another element b.

1.1◦. In this case, all elements xi belongs to the set {a, b}. Thus, a possible U -aggregate x should
also belong to this set. Thus, it should be equal either to a or to b.

1.2◦. To complete the proof for this case, we need to prove that both a and b are indeed possible
U -aggregates.

Indeed, if the majority of the elements xi belong to a set S, then it cannot be only elements
which are equal to a, since they do not form the majority. Thus, the set S must contain at least
one element equal to b – i.e., we must have b ∈ S.

Similarly, if the majority of the elements xi belong to a set S, then it cannot be only elements
which are equal to b, since they do not form the majority. Thus, the set S must contain at least one
element equal to a – i.e., we must have a ∈ S. So, indeed, both a and b are possible U -aggregates.

So, for this case, the proposition is proven.

2◦. Let us now consider the case when exactly half of the elements x1, . . . , xn are equal to an element
a, and not all other elements are equal to each other.

Without losing generality, we can describe this case as x1 = . . . = xn/2 = a, and xi 6= a for
i > n/2.

Since not all elements xi, i > n/2, are equal to each other, there is an element xj which is
different from xn/2+1 (and both are different from a).

2.1◦. Let us first prove that every U -aggregate element x must be equal to a.

Indeed, in this case, at least n/2 + 1 (majority) of elements xi belong to the set {a, xn/2+1}, so,
for every U -aggregate x, we must have x ∈ {a, xn/2+1}. Thus, x should be either equal to a or to
xn/2+1.

Similarly, at least n/2 + 1 (majority) of elements xi belong to the set {a, xj}, so, for every
U -aggregate x, we must have x ∈ {a, xj}. Thus, x should be either equal to a or to xj .

Since we have selected xj for which xj 6= xn/2+1, the condition that x = a or x = xj is not
satisfied when x = xn/2+1. Thus, the option x = xn/2+1 is not possible.

So, we conclude that, indeed, every U -aggregate element x must be equal to a.

2.2◦. To complete the proof, let us show that the element a is indeed a possible U -aggregate.
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Indeed, if the majority of elements x1, . . . , xn belong to a set S, this cannot be only elements
different from a, since they do not form a majority. Thus, at least one of the elements equal to a
must also belong to the set S, i.e., we should have a ∈ S. Thus, a is indeed a possible U -aggregate.

Discussion. Since in general, considering all the sets does not lead to a meaningful aggregation,
we have to only allow sets from a certain family.

Structure of the paper. Let us start with considering all possible intervals. In Section 3, we
analyze the 1-D case. In this case, as we will show, voting aggregation results in a median. In
Section 4, we show that in the 1-D case, we cannot expand beyond intervals.

In Section 5, we extend the interval result to a multi-D case – and we also show that we cannot
extend beyond multi-D intervals.

3. 1-D Interval-Based Voting Aggregation Leads to (Interval) Median

Let us first clarify what we mean by intervals.

Definition 2. By an interval, we mean a finite closed interval [a, b] = {x : a ≤ x ≤ b} corresponding
to real numbers a ≤ b. The class of all interval will be denoted by I.

Now, we need to clarify what we mean by a median.

Definition 3. For every sequence of real numbers x1, . . . , xn, let x(1) ≤ . . . ≤ x(n) denote the result
of sorting the numbers xi in increasing order.

− when n is odd, i.e., when n = 2k + 1 for some integer k, then by a median, we mean the value
x(k+1);

− when n is even, i.e., when n = 2k for some integer k, then by a median, we mean the interval
[x(k), x(k+1)].

The median will also be called an interval median.

Proposition 5. For every sequence of numbers x1, . . . , xn, the I-aggregate set is equal to the median.

Comment. Median is indeed often used in data processing, since it is the most robust aggregation –
i.e., the aggregation which is the least vulnerable to possible outliers; see, e.g., (Huber, 2004; Huber
and Ronchetti, 2009; Rousseeuw and Leroy, 1987). Not surprisingly, median is used in econometrics,
as a more proper measure of “average” (“typical”) income than the mean (OECD, 2016) – since
a single billionaire living in a small town increases its mean income without affecting the living
standards of its inhabitants (see also (Kreinovich et al., 2015)).

Proof. In terms of intervals, the condition for a number x to be a possible I-aggregate takes the
following form:

for every interval [a, b], if the majority of the elements x(i) belong to this interval,
then x should also belong to this interval.
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1◦. Let us first prove that every possible U -aggregate x should belong to the median set.

1.1◦. Indeed, if n = 2k + 1, then the majority of elements x(i) belong to the interval [x(1), x(k+1)]:
namely, k + 1 elements x(1) ≤ . . . ≤ x(k+1). Thus, every possible U aggregate x must belong to the
same interval, and thus, we must have x ≤ x(k+1).

Similarly, the majority of elements x(i) belong to the interval [x(k+1), x(n)]: namely, k+1 elements
x(k+1) ≤ . . . ≤ x(n). Thus, every possible U aggregate x must belong to the same interval, and thus,
we must have x ≥ x(k+1).

From x ≤ x(k+1) and x ≥ x(k+1), we conclude that x = x(k+1), i.e., x coincides with the median.

1.2◦. If n = 2k, then the majority of elements x(i) belong to the interval [x(1), x(k+1)]: namely, k+ 1
elements x(1) ≤ . . . ≤ x(k+1). Thus, every possible U aggregate x must belong to the same interval,
and thus, we must have x ≤ x(k+1).

Similarly, the majority of elements x(i) belong to the interval [x(k), x(n)]: namely, k + 1 elements
x(k) ≤ . . . ≤ x(n). Thus, every possible U aggregate x must belong to the same interval, and thus,
we must have x ≥ x(k).

So, we conclude that x(k) ≤ x ≤ x(k+1), i.e., that x is indeed an element of the median interval
[x(k), x(k+1)].

2◦. To complete the proof, let us prove that every element of the interval median is indeed a possible
I-aggregate. For this, we need to show that if an interval [a, b] contains the majority of elements
x(i), then it contains the interval median.

Let us prove it by considering two possible situations: when n is odd and when n is even.

2.1◦. Let us show that in the odd case, when n = 2k + 1, if the interval [a, b] contains the majority
of the elements x(i), then x(k+1) ∈ [a, b], i.e., a ≤ x(k+1) and x(k+1) ≤ b.

We will prove both inequalities by contradiction. If a > x(k+1), then the interval [a, b] cannot
contain any of the k + 1 elements x(1) ≤ . . . ≤ x(k+1), and thus, must contain no more than k
remaining elements x(k+2), . . . , x(n) – which do not form a majority.

Similarly, if b < x(k+1), then the interval [a, b] cannot contain any of the k+ 1 elements x(k+1) ≤
. . . ≤ x(n), and thus, must contain no more than k remaining elements x(1), . . . , x(k), which also do
not form a majority.

Thus, if the interval [a, b] contains the majority of elements x(i), then it must contain the median
x(k+1) – and so, the median is a possible I-aggregate of the values x1, . . . , xn.

2.2◦. Let us show that in the even case, when n = 2k, if the interval [a, b] contains the majority of
the elements x(i), then [x(k), x(k+1)] ⊆ [a, b], i.e., a ≤ x(k) and x(k+1) ≤ b.

We will prove both inequalities by contradiction. If a > x(k), then the interval [a, b] cannot
contain any of the k elements x(1) ≤ . . . ≤ x(k), and thus, must contain no more than k remaining
elements x(k+1), . . . , x(n) – which do not form a majority.

Similarly, if b < x(k+1), then the interval [a, b] cannot contain any of the k elements x(k+1) ≤
. . . ≤ x(n), and thus, must contain no more than k remaining elements x(1), . . . , x(k), which also do
not form a majority.
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Thus, if the interval [a, b] contains the majority of elements x(i), then it must contain the median
[x(k), x(k+1)] – and so, every element from the interval median is a possible I-aggregate of the values
x1, . . . , xn.

The proposition is proven.

What if we require strong majority? What if instead of requiring that a typical element x
satisfy all the properties that are satisfied by a simple majority of inputs, we instead require that
the property P (x) is triggered only when we have a strong majority: e.g., when the proportion of
values xi satisfying this property is larger than a certain threshold t > 0.5?

In this case, we have a similar result.

Definition 4. Let q ≥ 1, let S be a class of subsets of IRq, let x1, . . . , xn ∈ IRq, and let t be a
number between 0.5 and 1.

− We say that an element x ∈ IRq is a possible t-S-aggregate of the elements x1, . . . , xn if the
following condition holds:

for every S ∈ S, if more than t · n of xi are in this set,
then x should be in this set.

− The set of all possible t-S-aggregates is called the t-S-aggregate set of the elements x1, . . . , xn.

Proposition 6. For every sequence of numbers x1, . . . , xn, and for every t, the t-I-aggregate set is
equal to the interval [x(n−k+1),(k) ], where k is the smallest integer greater than t · n.

Proof is similar to the proof of Proposition 5.

Another possible derivation of a median. Interval median can be also derived from other
natural conditions:

− that it is a continuous function of x1, . . . , xn,

− that it is invariant with respect to arbitrary strictly increasing or strictly decreasing re-scalings;
such re-scalings which make physical sense: e.g., we can measure sound energy in Watts or in
decibels – which are logarithmic units; and

− that this is the narrowest such operation – else we could, e.g., take an operation returning the

whole range

[
min
i

xi,max
i

xi

]
.

Definition 5. Let n ≥ 1 be fixed. By an aggregation operation, we mean a mapping that maps each
tuple of real numbers x1, . . . , xn into an interval A(x1, . . . , xn) = [a(x1, . . . , xn), a(x1, . . . , xn)], with
the following properties:

1. this operation is continuous, i.e., both functions a(x1, . . . , xn) and a(x1, . . . , xn) are continuous;

2. this operation is scale-invariant, meaning that:

REC 2016 - O. Kosheleva and V. Kreiovich

292



Voting Aggregation Leads to (Interval) Median

• for each strictly increasing continuous function f(x), we have a(f(x1), . . . , f(xn)) =
f(a(x1, . . . , xn)) and a(f(x1), . . . , f(xn)) = f(a(x1, . . . , xn)), and

• for each strictly decreasing continuous function f(x), we have a(f(x1), . . . , f(xn)) =
f(a(x1, . . . , xn)) and a(f(x1), . . . , f(xn)) = f(a(x1, . . . , xn));

3. this operation is the narrowest meaning that if for some operation B(x1, . . . , xn) that sat-
isfies the properties 1 and 2, we have B(x1, . . . , xn) ⊆ A(x1, . . . , xn) for all tuples, then
B(x1, . . . , xn) = A(x1, . . . , xn).

Proposition 7. Interval median is the only aggregation operation in the sense of Definition 5.

Proof.

1◦. One can easily check that the interval median operation M(x1, . . . , xn) satisfies the properties
1 and 2 from Definition 5.

2◦. To complete our proof, it is thus sufficient to prove that for every operation A(x1, . . . , xn) that
satisfies the properties 1 and 2, we have M(x1, . . . , xn) ⊆ A(x1, . . . , xn).

Since the operation A(x1, . . . , xn) is continuous, and every input (x1, . . . , xn) with equal elements
xi = xj can be represented as a limit of inputs in which all elements are different, it is sufficient to
consider the case when all the elements in the input are different, i.e., when x(1) < x(2) . . . < x(n).

We can now form a strictly increasing transformation f(x) for which f(x(i)) = x(i), and f(x) 6= x
for all other numbers x. Indeed:

− for x(i) ≤ x ≤ x(i+1), we can take

f(x) = x(i) +

(
x− x(i)

x(i+1) − x(i)

)2

· (x(i+1) − x(i)),

− for x ≤ x(1), we can take f(x) = x(1) − 2 · (x(1) − x), and

− for x ≥ x(n), we take f(x) = x(n) + 2 · (x− x(n)).

For this function, since f(xi) = xi for all i, the condition a(f(x1), . . . , f(xn)) = f(a(x1, . . . , xn))
implies that a(x1, . . . , xn) = f(a(x1, . . . , xn)), i.e., that f(z) = z for z = a(x1, . . . , xn). By our
selection of the function f(x), this means that z = a(x1, . . . , xn) must coincide with one of the
values x(i). Similarly, the value a(x1, . . . , xn) must coincide with one of the values x(j). Thus, we
have A(x1, . . . , xn) = [a(x1, . . . , xn), a(x1, . . . , xn)] = [x(i), x(j)] for some i and j.

From continuity, we can conclude that the corresponding indices i and j must be the same for all
the tuples x1, . . . , xn in which all elements are different – otherwise, we would have a discontinuity.

In particular, this means that for the tuple xi = i, we have A(1, 2, . . . , n) = [i, j]. The strictly
decreasing function f(x) = n + 1 − x keeps the tuple intact. Thus, scale-invariance implies that
A(1, 2, . . . , n) = [n+1−j, n+1−i]. This means that j = n+1−i, i.e., that we have A(x1, . . . , xn) =

[x(i), x(n+1−i)]. Here, we must have i ≤ n + 1− i, i.e., 2i ≤ n + 1 and i ≤ n + 1

2
.
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For odd n = 2k + 1, this means that i ≤ k + 1, thus j = n + 1 − i ≥ k + 1, so indeed,
M(x1, . . . , xn) = x(k+1) ∈ [x(i), x(n+1−i)] = A(x1, . . . , xn).

For even n = 2k, this means that i ≤ k, thus j = n + 1− i ≥ k + 1, so indeed, M(x1, . . . , xn) =
[x(k), x(k+1)] ⊆ [x(i), x(n+1−i)] = A(x1, . . . , xn).

The proposition is proven.

4. 1-D Case: Can We Expand Beyond Intervals?

One can easily check that in our analysis, instead of closed intervals, we can consider general convex
subsets of the real line – i.e., subsets S that, for every two real numbers a and x′, contain all the
numbers between x and x′. In addition to closed intervals, convex sets include open intervals,
semi-open intervals, and intervals with infinite endpoints.

Can we go beyond intervals? It turns out that we cannot, as the following result shows.

Proposition 8. Let a class S contain, in addition to all the intervals, a non-convex set S0. Then,
for n = 3 and for every n ≥ 5, there exists values x1, . . . , xn for which the S-aggregate set is empty.

Proof.

1◦. The fact that the set S0 is not convex means that there exist points a < b < c for which a, c ∈ S0

but b 6∈ S0. To construct the desired counterexample, we will then form sequences xi in which some
elements are equal to a, some to b, and some to c.

We will consider three possible cases: when n = 3k, when n = 3k + 1, and when n = 3k + 2.

2◦. Let us first consider the case when n = 3k. In this case, we take k values equal to a, k values
equal to b, and k values equal to c.

2k of these values form a majority. Thus, the majority of elements xi belong to the interval [a, b],
so any possible S-aggregate x must also belong to this interval. Similarly, the majority of elements
xi belongs to the interval [b, c], so x must also belong to the interval [b, c]. From x ∈ [a, b] and
x ∈ [b, c], we conclude that x ∈ [a, b] ∩ [b, c] = {b}, i.e., that x = b. However, also, the majority of
elements are equal to a or to c and thus, belong to the set S0. So, we should conclude that x ∈ S0

– but the element x = b does not belong to S0.
This contradiction shows that in this case, S-aggregate set is indeed empty.

3◦. When n = 3k + 1 and n > 4, we get k ≥ 2. In this case, we select k elements equal to a, k
elements equal to b, and k + 1 elements equal to c. If we pick only two of these three groups of
elements, we get at least 2k elements. So, to continue with the arguments similar to what we had
in Part 2 of this proof, it is sufficient to make sure that 2k elements form a majority, i.e., that

2k >
3k + 1

2
. This inequality is equivalent to 4k > 3k + 1 and to k > 1 and is, thus, true. So, this

case is proven as well.

4◦. When n = 3k + 2 and n > 4, we get k ≥ 1. In this case, we select k elements equal to a, k + 1
elements equal to b, and k + 1 elements equal to c. If we pick only two of these three groups of
elements, we get at least 2k + 1 elements. So, to continue with the arguments similar to what we
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had in Part 2 of this proof, it is sufficient to make sure that 2k + 1 elements form a majority, i.e.,

that 2k + 1 >
3k + 2

2
. This inequality is equivalent to 4k + 2 > 3k + 2 and to k > 0 and is, thus,

always true. So, this case is proven as well.

The proposition is proven.

Discussion. The above proposition excluded values n = 1, n = 2, and n = 4. For n = 1 and n = 2,
as we have mentioned earlier, all the values xi are possible aggregates even when we consider all
possible sets S.

For n = 4, it is also possible to have a non-convex set S0 for which the (I ∪ {S0})-aggregate set
is always non-empty.

Proposition 9. For n = 4, there exists a non-convex set S0 for which the (I ∪ {S0})-aggregate set
is always non-empty.

Proof. Indeed, let us take a 2-point set S0 = {0, 1}. In this case, majority means at least 3 elements.
So, we must consider tuples of 4 elements in which 3 are equal to 0 or 1.

For n = 4, the interval median is the interval [x(2), x(3)]. All these elements are possible I-
aggregates. So, prove our result, it is sufficient to show that at least one of them is also a possible
{S0}-aggregate.

If two or fewer element xi are equal to 0 or 1, then the S0-related condition does not require
anything from a possible aggregate element. The only time when this condition needs to be taken
into account is when 3 out of the 4 elements x(1), . . . , x(4) are equal to 0 or 1. In this case, however,
at least one of the bounds x(2) and x(3) is equal to 0 or 1, and thus, belongs to the set S0. This bound
is therefore a possible {S0}-aggregate – thus, the (I ∪ {S0})-aggregate set is indeed non-empty.

The proposition is proven.

5. Multi-D Interval-Based Voting Aggregation

Discussion. Let us now consider the multi-D situation. In this case, a natural multi-D analog of
intervals are boxes.

Definition 6. For every q ≥ 1, by a box, we mean a set [a1, b1] × . . . × [aq, bq], where [ai, bi] are
intervals. The class of all boxes will be denoted by B.

Proposition 10. For every sequence of tuples x1, . . . , xn, the B-aggregate set is the box

M1 × . . .×Mq,

where for every i, Mi is the interval median of the i-th components x1i, . . . , xni.

Proof.

1◦. Let us first prove that every possible B-aggregate tuple belongs to the median box M1×. . .×Mq.

Let us fix one of the dimensions. Without losing generality, we can assume that this dimension
is the first one. Then, we consider numbers x11, . . . , xn1.

REC 2016 - O. Kosheleva and V. Kreiovich

295



O. Kosheleva and V. Kreiovich

For all other dimensions j 6= 1, let us consider the largest possible boxes

[Aj , Bj ]
def
=

[
min
k

(xkj),max
k

(xkj)

]
that contain all given values xkj .

For each possible B-aggregate tuple x = (e1, . . . , eq), the desired property holds for all the boxed
of the type [a1, b1]× [A2, B2]× . . .× [Aq, Bq]. Since all other intervals forming this box are the largest
possible, the condition that a tuple xi is contained in this box is equivalent to the condition that
xi1 ∈ [a1, b1].

Thus, for these boxes, the definition of a possible B-aggregate of the tuples x1, . . . , xn implies
that the first component e1 of the tuple x is a possible I-aggregate of the components x11, . . . , xn1.
We already know that this implies that e1 belongs to the interval median M1 of these components.

Similarly, we can prove that e2 belongs to M2, etc., thus indeed x ∈M1 × . . .×Mq.

2◦. Vice versa, let us prove that every tuple x ∈M1 × . . .×Mq is a possible B-aggregate.
Indeed, let x = (e1, . . . , eq) ∈M1× . . .×Mq, and let us assume that the majority of the tuples xi

belong to the box B = [a1, b1]× . . .× [aq, bq]. This implies, for every component i, that the majority
of the values x1i, . . . , xni belong to the interval [ai, bi]. We already know, from the 1-D case, that
this implies that ei ∈ [ai, bi] for every i. Thus, we indeed have

x = (e1, . . . , eq) ∈ [a1, b1]× . . .× [aq, bq] = B.

The proposition is proven.

Can we replace boxes with more general sets? Can we use more general sets, e.g., convex
polytopes? In general, no, and here is a simple 2-D counter-example.

Definition 7. Let P denote the class of all convex polytopes.

Proposition 11. For q ≥ 2, and for n = 3 or n ≥ 5, there exist an input x1, . . . , xn for which the
P -aggregate set is empty.

Proof. For n = 3, let us have x1 = (0, 0, 0, . . . , 0), x1 = (0.1, 0.9, 0, . . . , 0), and x3 = (1, 1, 0, . . . , 0).
Clearly here,

− the median M1 of the first components 0, 0.1, and 1 is 0.1, and

− the median M2 of the second components 0, 0.9, and 1 is 0.9.

For all other components, the median of the values 0, 0, and 0 is clearly 0.
Thus, the median box M1×M2×M3× . . .×Mq consists of a single point x2 = (0, 1.0.9, 0, . . . , 0).
Here, the majority of the points (namely, x1 and x3) belong to the convex straight line segment

S = {(x, x, 0, . . . , 0) : 0 ≤ x ≤ 1}, but the median does not belong to this segment – and thus, if
we add this segment to boxes, the resulting aggregate set will be empty.

For general n, we can have several points equal to x1 = (0, 0, 0, . . . , 0), several points equal to
x1 = (0.1, 0.9, 0, . . . , 0), and several points equal to x3 = (1, 1, . . . , 0) – just as we had in the proof
of Proposition 8.
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The proposition is proven.
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